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The Bardeen, Cooper, SchriefTer formalism is applied to a calculation of the mean-square projection KQ2 

of the angular momentum along the symmetry axis of an excited deformed nucleus. The results are com­
pared with empirical values obtained from analysis of recent data on fission-fragment angular distributions. 
The comparison corroborates qualitatively the validity of this application of the BCS formalism. Quantita­
tive optimization of the fit to experiment yields the result that the energy gap for a nucleus deformed to the 
fission-barrier shape is about twice as large as the same quantity at the stable shape. Implications of this 
result for odd-even effects in nuclear fission are discussed. 

I. INTRODUCTION 

THE BCS model of superconductivity1 has been 
applied with remarkable success in the descrip­

tion of properties of nuclear ground states and low ex­
cited states.2-6 I t has also been suggested7 that this de­
scription may suffice to explain certain data concerned 
with nuclei at higher excitations, although the basis of 
evidence in favor of applicability to pertinent statistical 
properties is at present much less substantial than that 
on which the ground-state applications are made. 

This paper reports an analysis of improved measure­
ments8-9 of the anisotropy of fission fragments from the 
neutron-induced fission of Pu239, based on the BCS de­
scription of the dependence of pairing effects on excita­
tion. The special relevance of such data to pairing in de­
formed nuclei has already been discussed elsewhere,7 

and seems to overweigh the minor disadvantage that 
they provide information not on nuclei near their nor­
mal ground-state shape, but stretched instead to their 
saddle-point shape during the fission process. 

We first discuss those features of the BCS analysis 
relevant to superfluid nuclei (Sec. II) and develop their 
application to those aspects of nuclear structure which 
determine the fission anisotropy (Sec. I I I ) . Then the 
analysis of the experimental data in terms of parameters 
characteristic of the nuclear structure is described 

* Work performed under the auspices of the U. S. Atomic Energy 
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(Sec. IV). In Sec. V the comparison of theory and ex­
periment is made and the conclusions are drawn that 
the superfluid description of this data is clearly superior 
to an independent particle description, and that it is 
adequate to describe the data at its present level of 
accuracy. Finally, in Sec. VI inferences are drawn con­
cerning the properties of nuclei at their saddle shape and 
their implications for other features of the fission proc­
ess are noted. The results are summarized in Sec. VII. 

II. THE BCS ANALYSES FOR SUPERFLUID NUCLEI 

The statistical analysis of a Fermi system described 
by a pairing Hamiltonian was first treated by Bardeen, 
Cooper, and Schrieffer1 in connection with the super­
conductivity of the electrons in some metals. By re­
quiring that the free energy of the system be minimal 
at any given temperature, T, they obtained a modified 
single-particle spectrum described by the replacement 

e y - ^ E y ^ e Z + A 2 ) 1 ' (1) 

where ey is the excitation energy of the jth particle (or 
hole) in the absence of the interaction, and Ej the cor­
responding excitation energy of the j t h excitation when 
the interaction is included. The new excitations are 
sometimes called "quasiparticles" because of the fact 
that their description corresponds essentially to the de­
scription of independent Fermi particles whose spec­
trum corresponds to Eq. (1) above. This feature is per­
haps more transparent when the problem is handled by 
the alternative, but equivalent, method of Valatin10 

and Bogoliubov.11 

Besides the modification of the spectrum, BCS de­
rives the equation for the dependence of the gap param­
eter A on temperature. 

1 /•*« de / E \ 
—= / —tanhf — ) . (2) 
Gg Jo E \ 2 7 7 

Here G is the pairing matrix element (assumed constant 
10 J. G. Valatin, Nuovo Cimento 7, 843 (1958). 
11 N. N. Bogoliubov, Zh. Eksperim. i Teor. Fiz, 34, 58 (1958) 

[translation: Soviet Physics—JETP 7, 41 (1958)]; Nuovo Ci­
mento 7, 794 (1958). N. N. Bogoliubov, V. Tolmachev, and D. 
Shirkov, A New Method in the Theory of Superconductivity [English 
translation (Consultants Bureau, Inc., New York, 1959)]. 
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between states in a range zb/zw about the Fermi energy), 
g is the density (assumed constant) of unperturbed de­
generate pairs of single-particle levels (neutrons or 
protons) near the Fermi sea, and E is given by Eq. 
(1). Solution of Eq. (2) provides 

(a) the ground-state value of the gap parameter, 
Ao, when T = 0 ; 

(b) the value of the critical temperature Tc at which 
Eq. (2) is satisfied by A=0 , and above which the energy 
is no longer minimized by a modification of the form 
(1), so that the system reverts to the ordinary descrip­
tion obtained by neglecting the pairing interaction; 

(c) the dependence of the gap parameter on tempera­
ture when 0 < T < Tc. 

When Ao<g.hc*), the weak coupling limit applies and 
Eq. (2) yields 

ho) 
A o = — (3) 

sinhl/gG 

2 7 
Tc——ho) expf 

T \ gG) <-s) (4) 

in the extreme cases mentioned, together with the ratio 

2Ao/ r c -27 r /7= 3.5278. 

Here hry is the Euler-Mascheroni12 constant, 

7=1.781072-•• . 

(5) 

All of these formulas are relevant to deformed nuclei 
with appropriate choice of the constants g, G, and hoi 
and appropriate modification for the fact that the neu­
trons and protons comprise two independent fermion 
systems rather than the single fermion system described 
in the case of electrons in metals. For simplicity we 
assume in this analysis that the constants relevant to 
neutrons are the same as those for protons, so that the 
modifications involve merely insertions of 2x factors in 
various places and the values of the constants correspond 
to an average of the actual neutron and proton values. 

For nuclei one also needs a description parametrized 
by the excitation energy rather than the temperature. 
In a finite system, this feature carries implications which 
will be discussed more fully elsewhere13; for the purposes 
of this discussion it suffices to assume that an adequate 
average description of the system may be obtained by 
identifying each temperature with the average excita­
tion energy calculated at that temperature in the mini­
mal BCS ensemble. The excitation energy is just the 
difference between ensemble average of the Hamiltonian 
at temperature T and the same average at zero tempera­
ture, and can be written 

E*(T)=U(T)-U(0) 
-Uo+U^+Uso-UoiO), (6) 

12 B. Muhlschlegel, Z. Physik 151, 613 (1958); 155, 313 (1959); 
156, 235 (1959). 

13 M. Rich and J. Griffin, Phys. Rev. Letters 11, 19 (1963). 

FIG. 1. The nuclear 
temperature and nu­
clear gap parameter 
are plotted against 
the average excita­
tion energy of the 
nucleus. 

where UQ is the "ground-state" energy at temperature 
T, measured with respect to the ground state of the 
noninteracting Fermi gas. 

U0(T)-U0(0) = gA<?-gAK (7) 

The quasiparticle energy £7qp has the form analogous to 
a single-particle excitation energy14: 

J o 

U^H def(e)E=8gTV(t), (8) 

where t= T/Tc. 
Finally, the self-consistent energy arises from the 

minimization procedure and is given by 

00 7 

Jo E 
(9) 

In these expressions f(e) is the usual Fermi occupation 
function for a quasiparticle e with energy given by (1). 

/(«) = { l+expj —(e2+A2)1/2l (10) 

These formulas include already the 2x factor for 
neutrons and protons; also, temperature is measured 
throughout in energy units. E*(T) is then obtained by 
numerical evaluation of A(/), J(i), and L(t); it is plotted 
in dimensionless form in Fig. 1, together with the ratio 
A/Ao. 

III. THEORETICAL CALCULATION OF FISSION 
ANGULAR DISTRIBUTION PARAMETER, K<? 

The modifications of the independent-particle re­
sults implied by a BCS pairing interaction are especially 
relevant to data on the angular distribution of fission 
fragments because of the fact that such angular distri­
butions depend specifically on the quantity Ko2 which 
measures the mean square value of the projection of 
angular momentum on the nuclear symmetry axis. In 

14 Various dimensionless integrals occur throughout this dis­
cussion. In each case they depend only on the dimensionless 
temperature t—T/Tc. They are denned and, in some cases, tabu-
ated in the Appendix. 
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the presence of a pairing interaction among the single-
particle states (doubly degenerate with projection ±& 
along the symmetry axis), the spectrum of excitations 
which can contribute to the total projection15 no longer 
extends continuously to the ground state; instead, such 
excitations occur only above minimum energy 2A in 
even-even nuclei. The result is that, at a given excita­
tion energy, a superfluid nucleus will have a value of KQ2 

significantly less than its noninteracting counterpart. 
The dependence of KQ2 upon excitation energy is there­
fore a good test of the persistence of superfluid effects 
to finite excitation energies. For this reason the very 
careful measurements analyzed here are of special 
value for such a test. In the present section we discuss 
the relationship between the superfluid model and the 
quantity KQ2 derived from these measurements, follow­
ing essentially a method described earlier. 

In calculating the quantity KQ2 we must recognize 
that the intrinsic spectrum of a deformed nucleus is not 
a complete description of the spectrum, but omits low-
lying collective rotational states associated with the 
degeneracy of the deformed Hartree-Fock solution 
under rotations.16 Therefore, although a good descrip­
tion of the average angular momentum along the sym­
metry axis may be obtained by considering the intrinsic 
spectrum alone, the moment of inertia $x perpendicular 
to this axis must be calculated by appeal to some 
semiclassical argument such as the "cranking model"17 

or the method of Migdal.18 

Thus, in the Boltzmann factor, 

exp-
K2 

2K0
2 = exp-

fi2K2r 1 

2TL^ i ffj 
(11) 

the quantity IT'Su can be evaluated directly from the 
average of K? over the intrinsic spectrum: 

T$u 
-={&) 

J —o 

<W/(e)[l- /(e)] , (12) 

i(0 
= s : , l

r iEr-
¥ 

(13) 

(14) 

Here ke
2 is the square of k for the quasiparticle excita­

tion with energy (e2+A2)1/2 and / ( l —/) is the proba­
bility that one and only one of the degenerate pair =fc ke 

is excited. We assume in evaluating (K2) that ke
2 may 

be replaced by some average value (&2)av and removed 
from the integral. 

The evaluation of $iT, on the other hand, must pro-
15 This statement is true apart from possible collective excita­

tions which may fall in the region of the energy gap. Such states 
are not considered in this analysis because their contribution to 
K0

2 should be small. 
16 D. J. Thouless, Nucl. Phys. 31, 211 (1962). 
17 D. R. Inglis, Phys. Rev. 96, 1059 (1954); 97, 701 (1955). 
18 A. B. Migdal, Nucl. Phys. 13, 655 (1959). 

FIG. 2. The calcu­
lated parameter K<? 
is plotted versus ex­
citation energy for 
the two cases given 
byEqs. (19a), (19b). 

ceed through a calculation of SFj.. Migdal's analysis 
shows that 

g: i irrot< 3: i < gr irig ( 1 5 ) 

and also that 
Sx -> $lig (16) 

as the deformation becomes large. 
For Pu240, with x= (Z2/A)/(Z2/A)CTiticB,i approxi­

mately equal to 0.74, liquid drop calculations19 yield for 
Rm&x/Ro at the saddle shape the value 1.71. The irrota-
tional moment for a spheroid of this shape is 

3 : i irrot = = 0 > 75 3 : x rig j (17) 

which already limits the range of 5\L so seriously as to 
suggest that the approximation S ^ ^ r i g should be 
fairly good at all temperatures. At the opposite allow­
able extreme, however, is the assumption that 5\L is 
given by 3 :i i rrot=0.750 :ir ig at T=0 and increases to 
$L

Tis SLtT=Tc in accordance with the algebraic depend­
ence on A given by Belyaev2: 

CFî SFi1** 
A(D2T* /2 

1+0.241 = SWCO. (18) 
A0

2 J 
These two extremes yield 

K<? 3.05/7 (0 

(Ko2)c [4.05-/(07/(0] 
(19a), (19b) 

where / = T/Te, (Ko2)c is the value of Ko2 at T= Tc, and 
f(t) is (a) identically equal to 1 when $i=$iTig is as­
sumed, or (b) defined by (18) when 9\L varies in the man­
ner assumed. We have also inserted the relationship 
3rjrig/3rnrig=4.05 appropriate to the calculated19 shape 
of Pu240 at the saddle point. The functions (19a), (19b) 
are plotted in Fig. 2. 

We note that, in the absence of pairing, I(i) = f(t) = 1, 
and Eq. (19) reduces to the usual independent particle 
result that KQ2 is simply proportional to T. Even in the 
presence of pairing, this identity applies at the critical 
temperature (2=1), so that the continuous transition 

19 Stanley Cohen and W. J. Swiatecki, University of Cali­
fornia, Lawrence Radiation Laboratory Report UCRL-10450, 
1962 (unpublished). 
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to the independent particle behavior for T>TC is and 
assured. 

Equation (19) provides a theoretical description of 
the dependence of Ko2 on temperature [or on excitation 
energy, through Eq. (6)] which can be compared with 
suitable experimental data. In the process of compari­
son, two parameters can be adjusted to optimize the 
fit: (KQ2)C and Tc(or Ec*). This comparison is discussed 
in Sec. V. 

IV. ANALYSIS OF DATA 

The experimental data of Simmons8 and Henkel and 
Simmons9 were combined to correct for the 5% Pu240 

present in the target sample. The resulting Pu240 anisot­
ropics (Table I) were analyzed by means of the ANG-

TABLE I. Angular distributions of fission fragments from 
Pu239-f-w (Ref. 8), corrected for 5% Pu240 by the measurements of 
Ref. 9. The Pu239 data used here lacked certain small experimental 
corrections (see Ref. 8) which are inconsequential for purposes of 
the present analysis. 

En 

1.00 
1.50 
1.75 
2.00 
2.25 
2.50 
2.75 
3.00 
3.25 
3.50 
4.00 
4.50 
5.00 

W(67.5°) 

PF(90°) 

1.018±0.011 
1.017=1=0.011 
1.026=1=0.010 
1.025=1=0.019 
1.026=1=0.008 
1.024=h0.007 
1.017=1=0.005 
1.021=1=0.005 
1.018=h0.009 
1.018=1=0.006 
1.026=1=0.011 
1.007=1=0.014 
1.025±0.013 

TF(45°) 

W(90°) 

1.039=1=0.010 
1.048=1=0.011 
1.058=1=0.012 
1.066±0.016 
1.056±0.007 
1.056±0.007 
1.049±0.005 
1.054=1=0.005 
1.051=1=0.009 
i.058±0.006 
1.066=1=0.011 
1.060±0.013 
il.055±0.012 

W(22.5°) 

W{90°) 

1.076=1=0.011 
il. 088=1=0.011 
1.091=1=0.012 
1.079=1=0.012 
•1.101=1=0.007 
•1.107=1=0.007 
4.100=1=0.006 
••1.089=b0.005 
1.098=1=0.009 
1.089=1=0.006 

£1.093=1=0.011 
1.103=1=0.015 
1.089=1=0.012 

JF(10°) 

W{W°) 

!1.070=h0.010 
,1.097=1=0.011 
1.108d=0.012 
1.114=h0.012 
,1.111=1=0.008 
1.116=1=0.007 
1.114=1=0.005 
1.110=1=0.005 
1.111 ±0.009 
1.103=1=0.005 
1.119=b0.013 
1.119=1=0.016 
1.106=1=0.013 

code20 which searches the value of /3= l/2i£0
2 which best 

fits the data according to the formula21"24 

W(#) = £ E E G( / ,M>(£ ; / , iO |ZW(#) | 2 , 
I M K 

where 

G(/ , j f )=EEE(2i :+i ) 
L j Mo 

X TL(En) | CM0M
iLI 12| CMO.M-MO.M108^

 2 

X[(25+l)(2/0+l)E(2i+l)r i(£„)]-1 , 
L 

(20) 

(21) 

20 L. Blumberg (private communication). See also Ref. 24. 
21 A. Bohr, in Proceedings of the Second United Nations Inter­

national Conference on the Peaceful Uses of Atomic Energy, Geneva, 
1956 (United Nations, Geneva, 1956), Vol. 2. 

2 2 1 . Halpern and V. M. Strutinskii, in Proceedings of the Second 
United Nations International Conference on the Peaceful Uses of 
Atomic Energy, Geneva, 1958 (United Nations, Geneva, 1958), 
Vol. 15. 

23 J. Griffin, Phys. Rev. 116, 107 (1959). 
24 L. Blumberg, thesis, Columbia University, 1962(unpublished). 

v(0;I,K) = e--/s.K!r y- e-"*2]-1 (22) 

For the neutron-induced fission of Pu239, i"o=i and 
5 = J in the above formulas. The penetration coefficients 
TL{EU) for neutrons were taken from optical-model 
calculations of Blumberg24 based on a Woods-Saxon 
potential characterized by the following parameters: 
r0=l.3Au* F, d=0.5 F; and F0=44 MeV to 43 MeV, 
WV=3.3 MeV to 3.6 MeV for £ n = 1.0 MeV to 5.0 MeV, 
respectively.25 

By searching /5 so as to minimize squared differences 
between the theoretical expression (20) and the observa­
tions of Table I one obtains at each neutron energy the 
value of /3 which gives the best fit, and also an estimate 
of the variance of 0 about this best value. In Table II, 

TABLE II . Results of analysis of the data of Table I. 

En 

1.00 
1.50 
1.75 
2.00 
2.25 
2.50 
2.75 
3.00 
3.25 
3.50 
4.00 
4.50 
5.00 

E*-Ef 

2.60 
3.10 
3.35 
3.60 
3.85 
4.10 
4.35 
4.60 
4.85 
5.10 
5.60 
6.10 
6.60 

1 

2/3 

16.03 
17.78 
17.86 
19.76 
19.33 
19.35 
21.65 
23.87 
24.30 
27.20 
27.43 
28.62 
35.26 

±(T(X 0
2 ) 

1.521 
1.399 
1.387 
1.525 
0.893 
1.315 
0.723 
0.784 
1.396 
0.999 
2.361 
2.593 
2.938 

X2 

1.57 
0.15 
1.44 
3.18 
1.87 
1.76 
1.75 
2.62 
0.25 
1.83 
3.09 
0.46 
0.78 

these results are tabulated (in terms of Ko2= 1/2(3) 
against the excitation energy in excess of the fission 
threshold. Table II is then the raw material for a com­
parison of the empirical dependence of KQ2 on E* = Ef 

with theory. 

V. COMPARISON WITH THEORY 

The experimental values of KQ2 of Table II were fit 
to the theoretical Eqs. (19a) and (19b) by choosing 
values of Ec* and searching for corresponding values of 
(KQ2)C which give the best fit to the data in the x2 sense. 
Because of the approximately linear relationship be­
tween Ko2 and Ec*, both formulas can be fit almost 
equally well by a range of parameters. Moreover, the 
values of x2 associated with the two extreme dependences 
of $i do not differ significantly. Therefore, the best 
fitting values of (Ko2) c for both dependences are plotted 
in Fig. 3 against the corresponding values of Z£c*. The 
values of x2 along these curves are such that the low-
energy data alone does not exhibit a clear-cut preference 
for any particular pair of parameters. 

25 R. G. Schrandt J. R. Beyster, M. Walt, and E. W. Salmi, Los 
Alamos Scientific Laboratory Report LA-2099,1959 (unpublished). 
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FIG. 3. The loci of best fits of the low energy data of Table IV 
to Eqs. (19a), (19b) are plotted. A similar curve is plotted for 
the high-energy data (Table II). Also indicated is the acceptable 
range of values for the critical energy. 

In order to choose the best values of Ec* and (KQ2)C 

from the curves of Fig. 3, we can consider data on Ko2 

taken at higher excitation energies. Vandenbosch 
et al.2Q have measured the fission anisotropy for U233+o;, 
which is especially favorable in that the percentage of 
second-chance fission (which is a complicating factor in 
the analysis) is quite low. For excitation energies above 
16 MeV, they deduce values of K0

2 listed in Table I I I . 

TABLE III . Empirical values of K0
2 at higher excitation energy. 

These values were obtained from Fig. 9 of Ref. 26 by subtraction 
of (&2>av=10 from those values. a{K$) is also taken from the un­
certainty indicated in that figure. The author is grateful to Dr. 
John Huizenga for supplying an enlargement of this figure to 
facilitate this procedure. 

£*(MeV) 

16 
18 
20 
22 
24 
26 
28 
30 
32 
34 

#o2 

88 
95.5 
104.5 
110.5 
118.0 
125.5 
134.0 
142.0 
150.0 
157.0 

ioW) 
10 
10.5 
8.5 
6.5 
6.0 
5.5 
4.0 
4.0 
4.0 
4.0 

By demanding that the parabolic dependence of the in­
dependent particle model (which should be the correct 
description for E*>Z£C*) provide a good fit to these 
measurements, we can determine the intersection be­
tween the locus of best fits to the low-energy data and 
to the higher energy data. The result is a unique deter­
mination of the critical excitation energy Ec* and the 
corresponding value of (KQ2) C. 

In carrying out this combination of high- and low-
energy data, one major feature must not be overlooked; 
viz., the parabolic dependence applicable at high energy 
should, if extrapolated to low energy, predict i£o2=0— 

26 R. Vandenbosch, H. Warhanek, and J. R. Huizenga, Phys. 
Rev. 124, 846 (1961). 

not at £ * = 0 , but at the ground-state energy of the in­
dependent particle system, which lies at an excitation 
energy £*=gAo2 in the paired system. Moreover, since 
the fissioning nucleus Pu237 is odd in this case, one must 
have Ko2=(k2)a,-v at the ground state rather than 
KQ2=0, which would apply for an even-even fissioning 
system such as the Pu240 measured in the low-energy 
region. 

When these features are taken into account, the in­
dependent particle model dependence of KQ2 on the ex­
citation energy £* of a paired system is given by 

i C o 2 = < £ 2 > a v + c ( £ * - g A 0
2 ) 1 / 2 . (23) 

Since by Eqs. (5) through (10), £ c* is equal to 3.1148 
gAo2, the requirement that (20) optimize the fit to 
a-induced measurements above i£*=16 MeV pro­
vides an equation for pairs of values [(j£0

2)/,£«,*] 
(where the prime indicates that (&2)av has been sub­
tracted to make this parameter correspond to that for 
the even-even low-energy data) which are consistent 
with his data. This relationship is also plotted in Fig. 3. 
Its intersections with the loci of best fits to the low-
energy data specify the range of the parameters con­
sistent with all the data considered and with the range 
of variations for $x between the extremes of Eqs. (19a) 
and (19b), respectively, 

18.3 MeV ?Ee*<19.6 
101.5 <(Xo2)c<106.1. ( } 

One notes that the total x2 for the two sets of data 
(23 data in all) varies from 16.3 to 15.8 between these 
extremes. The probabilities that x2 exceeds these values 
in a distribution with 21 degrees of freedom both lie 
between 70% and 80%. Thus, there is hardly any statis­
tical preference for either assumption (19a) or (19b) 
indicated by the data. 

The dependences of Ko2 on £* implied by the extreme 
values (24) of the parameters are presented in Fig. 4, 
together with the empirical values at low energy 
(Table I) and the higher energy data (Table II) meas­
ured by Vandenbosch et at.2% corrected to the cor­
responding even-even value by the subtraction of the 
odd particle contribution ((kp

2)aY=10). 

VI. IMPLICATIONS OF PRESENT ANALYSIS 

A. Implied Increase in Gap Parameter 

To simplify further discussion, we assume that 
£ c *=19 MeV, a value intermediate to the extremes 
allowed by the present analysis. If the level density 
parameter has the value g=4.5, Eq. (6) implies 

A0= 1.36 MeV (25) 

for an even-even nucleus like Pu240 stretched to its 
saddle-point shape. This value is somewhat larger than 
the corresponding values for similar nuclei at their 
stable ground-state deformation, a result which carries 
implications discussed below. 
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-EMMeV)-

10 15 20 25 
— E*(MeV)-~ 

30 35 

FIG. 4. The comparison between the low energy data (magnified 
scales) and the theory for the extreme best fitting values [Eq. 
(24)] is exhibited, together with the same comparison for the 
high and low energy data taken together. Dotted bars indicate 
data not utilized in determining best fits. 

B. Odd-Even Differences in the Fission Process 

Figure 5 provides a pictorial description of how a dif­
ference between the gap parameter for the stable shape 
Ao* and that for the fissioning saddle shape A0

f can lead 
to a retardation of the spontaneous fission half-lives of 
odd nuclei with respect to even nuclei and to a shift in 
the corresponding thresholds for energetic fission proc­
esses.27 There the potential surface of the even-even 
nuclei is traced as a function of deformation. On the 
same scale is plotted the corresponding potential sur­
face for an adjacent odd-̂ 4 nucleus which lies higher by 
an amount approximately equal to the gap parameter 
A, which may in general vary with deformation, assum­
ing values A0

S and Ao7 at the stable and saddle-point de­
formations, respectively. One sees that spontaneous 
fission of the odd nucleus requires penetration of a po­
tential barrier higher by an energy 

AF=A(/-Ao* (26) 

than that of the even-even nucleus. We have assumed 
here that fluctuations of ground-state energies away 
from the smooth mass surfaces have been corrected for 
in the manner proposed by Swiatecki.28 

One can estimate the magnitude of this effect by us­
ing the result of Ref. 29 that for Z2/A = 36.$, one milli-
mass unit increase in the potential barrier corresponds 
to an increase in lifetime by a factor approximately 
equal to 104-3. Since the value of A0

f implied by our 
analysis is approximately 700 keV larger than that29 

of stable Pu240, one estimates a retardation factor of 
about 1035-2X103. 

It should be noted that the retardation of odd-̂ 4 

spontaneous fission half-lives has also been attrib­
uted30-31 to the "specialization energy" associated with 
the constancy of the j£-quantum number as the nucleus 
deforms toward the saddle point. In particular, 
Johansen32 has analyzed this effect quantitatively and 
concludes that it is of the correct order of magnitude 
to explain the observed retardation factor (~105). 

It must be said that, although it would be very 
difficult to improve this calculation, it is based on some 
questionable simplifying assumptions (e.g., that the 
nucleus retains a spheroidal shape to the saddle point), 
and so need not be considered the final word on the 
question at hand. 

Moreover, this explanation of odd-even effects is 
much less cogent when one attempts to explain with it 
similar effects evident in energetic fission processes, 
since these involve the passage through an intermediate 
region of small deformation and relatively large internal 
excitation, during which it is hard to believe that the 
initial value of the projection K actually retains its 
identity as a good constant of the motion. 

Indeed, if one assumes that K is a perfect constant of 
the motion for spontaneous fission, but not constant at 
all for energetic fission, it is possible to untangle the two 
effects in question. This is due to the fact that the pair­
ing effect described here would then apply to both 
situations, whereas the constant-^" effect would be in 
evidence only for spontaneous fission. Then any differ­
ence between the even-odd effect in spontaneous fission 
and in threshold values for energetic fission would be 
attributed to the constancy of the X-quantum number, 
whereas the identical remainder would be attributable 
to the pairing effect discussed here. 

In Ref. 28 occur analyses of both thresholds and 
spontaneous lifetimes, which imply an odd-even thresh­
old difference of 1.2 mmu for Z2/A~37 and an equiv­
alent barrier height difference of 1.53 mmu from 
spontaneous-fission lifetimes. This would suggest a 
saddle-point gap parameter larger by 1.2 mmu than that 
at the stable shape. Our data analysis gives the com­
parable result of 700 keV=0.75 mmu. 

The difference could easily be resolved by a less ex-

27 P. Fong, Phys. Rev. 122, 1545 (1961) also discusses the effect 
of nuclear pairing on odd-even effects in fission, and makes cer­
tain arguments in favor of an enhanced pairing energy at the 
saddle shape. 

28 w . Swiatecki, Phys. Rev. 100, 936, 937 (1955); 100, 936 
(1955). 

29 E. K. Hyde, University of California, Lawrence Radiation 
Laboratory Report UCRL-9036, 1960 (unpublished). 
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FIG. 5. The effect 
of a deformation-
dependent gap on the 
differences between 
fission barriers for 
odd mass and even-
even compound nu­
clei is illustrated. 
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saddle point 
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*> J. O. Newton, Progr. Nucl. Phys. 4, 234 (1955). 
31 J. A. Wheeler, Niels Bohr and the Development of Physics 

(Pergamon Press, Ltd., London, 1955) p. 163. 
» S. E. Johansson, Nucl. Phys. 12, 449 (1959). 
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treme assumption than that used here, viz., assuming a 
tendency for K to remain constant even in energetic 
process, but with perfect constancy only for the spon­
taneous fission case. A quantitative statement of this 
explanation would, however, add nothing to the evidence 
at hand, which seems sufficient only for the qualitative 
conclusion that the dependence of the gap parameter on 
deformation could easily be as important in determining 
even-odd effects in fission as the assumed constancy of 
the iT-quantum number. 

C. Other Implications of the Saddle-Point Gap 

The implication of the present analysis that the gap 
at the saddle shape is even larger than that at the stable 
deformation suggests several qualitative features that 
can be expected in the angular distributions of fission 
fragments. In particular, it implies that, for excitation 
energies less than about 2.50 MeV above the fission 
threshold: (a) Ko2 ought to be quite small in even-even 
nuclei, and (b) the average Ko2 in odd-^4 compound 
nuclei should be determined only by the mean square 
projection, (&2)av associated with a single odd particle. 

Unfortunately, the study of neutron-induced fission-
fragment angular distributions from even-even com­
pound nuclei is limited by two features: (1) fission 
thresholds are generally below the neutron binding 
energy in the heavy elements, and (2) very low-energy 
neutrons carry only small angular momenta and thus 
limit the precision with which Ko2 can be determined in 
situation (a). One hopes that these difficulties can be 
obviated by the use of (d,pf) reactions which are 
capable of producing fission at excitation energies below 
the neutron binding energy33 in reactions involving 
reasonably large angular momenta. 

As regards the odd-^4 case (b), one must there seek a 
difference in the angular distributions attributable to 
the difference between the distribution in K for only 
one excited single particle and that for three or more 
single particles. For small anisotropics this is a very 
subtle distinction, and probably requires angular dis­
tribution data better by about one order of magnitude 
than that available at present. Such data might be ob­
tainable by means of present-day solid-state counter 
technology. Alternatively, the (d,pf) process might 
also in this case be used effectively to alleviate the lack 
of angular momenta available in neutron processes at 
low energy. 

VII. QUANTITATIVE UNCERTAINTIES 

Although the qualitative (almost linear) dependence 
of Ko2 on energy at low energies is adequately described 
by the superfluid theory used here, the choice of specific 
parameters necessary to quantify this theory (and the 
inferences drawn in the present analysis) is by no 
means unique. To achieve the specific numerical results 

33 Note added in proof. H. C. Britt, R. H. Stokes, W. R. Gibbs, 
and J. J. Griffin, Phys. Rev. Letters 11, 343 (1963) report a 
realization of this hope. 

obtained it was necessary to assume values for three 
parameters: (a) The mean square contribution, {kp

2)av, 
of a single odd neutron to Ko2, (b) the ratio of the rigid 
moments, $iTis/$uTis, and (c) the density g of pairs of 
single particle eigenstates in the deformed potential. 
In each case the assumption was made a priori, without 
specific reference to optimizing the agreement between 
theory and experiment. 

(&p2)av was taken as the average of K2 over all the 
single particle eigenstates of the last unfilled major 
shell with total oscillator quantum number, N: 

<V>av=iV76, (27) 

where 7 <N < 8 is expected, which implied 8<(^ p
2 ) a v 

< 1 1 . One sees from Fig. 4 that a vertical translation by 
± 3 units in Ko2 of the curve tracing out the best fits 
to the high-energy data might change Ec* by 2 MeV 
(or 10%), with a corresponding 5 % change in Ao. 

The ratio 5:irig/5:nrig? was taken from liquid drop 
calculations19 of the shape of the nucleus at the saddle 
point and exact integrations of the corresponding mo­
ments of inertia. To estimate the sensitivity of the re­
sults to this parameter, we have performed calculations 
with the liquid-drop value (3:jL

rig/^riirig= 4.05) changed 
by ± 2 0 % . Such changes result in corresponding changes 
in the best fitting £ c* by +1 .4 and - 2 . 0 MeV, in the 
implied value (25) of Ao by + 4 % and —6%, and in 
X2 at the best fit by —1.4 and +1 .7 , respectively. These 
increments can provide estimates of uncertainty if only 
one makes the reasonable assumption that the liquid 
drop shape gives moments accurate to 10%. 

I t should be noted that a (perhaps) different value of 
this ratio might be obtained from experimental esti­
mates34 of the nuclear saddle-point shape. However, such 
an estimate involves a nuclear temperature and can 
therefore be made in a manner consistent with the pres­
ent theory only by taking appropriate account of the 
modified energy-temperature relationship which the 
superfluid system exhibits. Moreover, the experiments 
cited appear to be consistent with the liquid-drop re­
sults we have utilized, so that one would be forced at 
the end of such a procedure to consider any difference 
between its results and the present ones attributable to 
experimental uncertainty. 

Finally, we must consider the assumed value of g 
(4.5/MeV), an error in which would produce the same 
percentage error in the inferred value of Ao. Our value 
was defined in the first rough estimate by counting the 
average density of levels in the Nilsson diagram in the 
neighborhood of the last filled lead in Pu240. This giave a 
range 4 < g < 4 . 8 for the average of the neutron and 
proton single-particle level density. The specific value 
chosen (g=4.5) within this range corresponds rather 
well with the value for A — 240 indicated by the work of 
Newton35 with the empirical correction suggested by 

34 R. Chaudry, R. Vandenbosch, and J. R. Huizenga, Phys. 
Rev. 126, 220 (1962). 

3* T. D. Newton, Can. J. Phys. 34, 804 (1956). 
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Ericson.36 There may be some basis for diasgreement 
about this value, but favoring more likely a smaller 
value37 rather than a larger, which would effect an 
increase in the inferred value of Ao over that given 
in Eq. (25). 

Over all, a reasonable estimate of the uncertainty in 
the value of A0 given in Eq. (25) might be =1=20%. 

Note added in proof. The direct measurement of Ref. 
33 indicates rather better than 20% agreement with the 
value (25). 

VIII. SUMMARY 

The present data and their successful description in 
terms of the statistical mechanics of a Fermi superfluid 
support the validity of extending the analogy between 
nuclei and superfluids to higher excitation energies.38 

Such an extension will imply deviations from ordinary 
independent particle model results for excitation energies 
less than E c*=3.11 gAo2 in nuclei properly described 
by the weak-coupling limit (deformed nuclei). 

In its detailed results, the present analysis implies 
that the energy gap at the saddle shape is somewhat 
larger than that at the stable shape for Pu240. This im­
plication suggests a straightforward qualitative explana­
tion of observed even-odd fission threshold differences 
as well as explaining a good portion of the odd-mass 
spontaneous fission retardation, previously attributed 
entirely to the constancy of the quantum number, K. 
Although this increase of the gap parameter with de­
formation runs counter to the trend observed for the 
heavy elements at their stable deformations, no clear-
cut contradiction with theory can be established without 
more detailed study of the behavior of the parameters 
which determine the system in the weak-coupling limit. 
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APPENDIX I 

A. Dimensionless Integrals 

Several dimensionless integrals occur in the discus­
sion of Sees. I I and I I I . These are defined in terms of 

36 T. Ericson, in Proceedings of the International Conference on 
Nuclear Structure, Kingston, edited by D. A. Bromley and E. W. 
Vogt (University of Toronto Press, Toronto, Canada, 1960). 

37 F. H. Bakke, Comptes Rendus du Congres International de 
Physique Nucleaire aux Basses Energies et Structure des Noyaux, 
Paris (Dunod Press, Paris, 1958). 

38 Note added in proof. Y. T. Grin, Zh. Eksperim. i Teor. Fiz. 43, 
1880 (1962) [translation: Soviet Physics—JETP 16, 1327 (1963)] 
verifies this point independently, but does not utilize the analysis 
to obtain new information about the saddle-point gap. 

the dimensionless temperature, t—T/Tc, as follows: 

J{t)= / <fo<S(^)[l+exp<S(x,/)]~S 
Jo 

L(t)= J dxZS(x,t){l+expS(x,t)}']r1, 
Jo 

I(t) = 2j dx[exp- <g(>, / )][ l+exp- <§0,/)]~2, 
Jo 

where 

and 

Here 

S(x,t) = [x2+x<r2J/2, 

wd(t) 

d(t)=-

yt 

Ao 

is obtained by solution of the dimensionless gap equa­
tion in the weak-coupling limit: 

/

#cu/Ao ( 

dx\ 02+<Z2)-1/2 

X t a n h j — (x2+d2)1121- (* 2 +l)- 1 / 2 . 

This equation is obtained from Eqs. (2) and (5) by 
direct substitution. 

TABLE IV. Calculated values of the excitation energy and 
gap parameter for specified values of /. 

t=T/Tc 

1.001 
0.980 
0.960 
0.940 
0.920 
0.900 
0.85 
0.80 
0.75 
0.70 
0.60 
0.50 
0.40 
0.20 
0.00 

£*/£ c* 

1.000 
0.9354 
0.8734 
0.8138 
0.7568 
0.7023 
0.5764 
0.4653 
0.3682 
0.2846 
0.1551 
0.0707 
0.0238 
0.0002 
0.0000 

d(t)= A/ Ao 

0.000 
0.2436 
0.3416 
0.4148 
0.4749 
0.5263 
0.6303 
0.7110 
0.7759 
0.8288 
0.9070 
0.9569 
0.9850 
0.9999 
1.0000 

For the convenience of the reader, the quantities 
d, E*/Ec, and KQ2/(KQ2)CJ which are of direct physical 
interest, are plotted in Figs. 1 and 2 and tabulated in 
Table IV. 

We note that, although L(t) diverges at t=l, the 
quantity d2L(t), which is of physical interest [Eq. (9)], 
remains well defined. 


